
Customer Success Story

Daffodil enables a consortium of taxi
service providers in Qatar to develop
a taxi booking application for their
10,000+ taxis

Customer:

Country:

Industry:

Our Role:

180+
 travel businesses

associated

10,000+
taxis and drivers

registered

100,000+
faster-loading speed

100+
bookings handled

per minute

Consortium of taxi companies in Qatar

Qatar

Travel & Transportation

Product Engineering

About The Client

The client is one of the major taxi services providers in Qatar. It was formed exclusively for online cab operations in
Qatar by a consortium of more than 180 Limousine operators in Qatar. Currently, 10,000+ taxis are associated
with the consortium. Their unique operating model makes them affordable to common people yet at the same time
beneficial for drivers as they charge a nominal commission only to maintain the system.

A majority of Qatar’s Limousine businesses had a
partnership with several multi-national ride-hailing app
companies to provide the services. These businesses
were facing challenges in this partnership due to fewer
margins and high expenses in maintaining luxury
vehicles like Limousine. In addition, the ride-hailing
companies increased their commissions and lowered the
fares, creating financial issues for Limousine companies
and drivers. It started to impact the entire Limousine
market adversely, forcing many to bring their business
down.

As a solution to this problem, the Limousine businesses
in Qatar formed a consortium. The consortium decided
to develop their own ride-hailing mobile application that
enables booking of taxis from the businesses registered
with the consortium.

The consortium approached Daffodil Software to
transform their vision into a market fit product. They
needed a technology partner who could proactively
contribute to design and ideation of their application,
rather than just provide development services. The
consortium chose Daffodil for our best cost/value
balance, extensive expertise in application development
as well as our innovation oriented approach. The
requirement was to:

The Situation

The Solution
The engagement started with the Daffodil team setting up a strategic requirement gathering process in place. This
was done through our unique Discover & Frame workshop, wherein we document app ideas, target market, persona,
business model, competition, revenue streams, etc. This helps us get a clear understanding of what is the client’s
expectations and effectively develop a project roadmap. Once, all the aforementioned aspects were documented, our
expert business analyst team analyzed the application requirements, created user stories, feature lists, process flow
diagrams and clickable prototypes of the application. On the techno-commercial front, they suggested the most viable
technology stack, identified third party tools and Integration and proposed a block level architecture of the application.

Develop a taxi booking application with two variants,
one for the taxi drivers and other for the passengers.
The passengers could search for a nearby driver,
based on their location and destination of their travel,
send a ride request to the nearest available driver,
book a ride, travel, and pay using the app. On the
other hand, the drivers’ app could let the drivers see
ride demands and navigate, accept ride requests, and
complete the requested rides.

To develop an admin panel for the car owners where
they could have a bird’s eye view of their fleet as well
as can see the stats up to a granular level such as
total rides, total revenue, daily/weekly and monthly
trips and transactions, number of canceled rides, total
passengers and drivers registered, etc. The admin
could also control various factors such as verifying
drivers, managing demand surge, discounts & coupon
codes, managing vehicle categories, etc.

Develop a scalable and robust architecture for the
application which could help them scale and add
more travel businesses to the consortium.

The user experience was one of the project’s cornerstones. The UI/UX of the application was a result of an extensive
research by our business analyst team to study the behavior and motivation factors of the defined user persona.
We focused on creating intuitive usability for both the applications. The passenger app was designed to easily allow
passengers to book a taxi with minimum clicks, make payments securely as well as easily locate the taxi in real time.
Similarly, the driver’s app was designed considering the ease of use for drivers. Emphasis was laid to enable drivers to
quickly register their car, accept rides and easily locate the passenger.

Envisaging the utter need of scalability, and robustness
of the application, a cloud-based architecture was
designed so that the applications are exquisitely
responsive to increase in number of drivers or
passengers. To maintain the cost-performance ratio,
team Daffodil selected Amazon Web Services (AWS) for
building an elastic infrastructure, for its brilliant pay-
as-you-go models which ensured that the client only
pays for the resources utilized and don’t have to invest
hundreds of dollars upfront. The entire infrastructure
was built on AWS, where the primary infrastructure
of the app was distributed across approximately 10
microservices. Kubernetes was used for managing
multiple microservices and with Elastic Kubernetes
Service (EKS), the app was made to handle over a
hundred booking requests per minute. Some of the key
technology challenges that Daffodil resolved were:

Team Daffodil developed the application that consisted
of three different variants: a native Android & iOS
application for drivers, a native Android and iOS
application for the passengers and a web based
application for business owners. The apps enable riders
and drivers to connect with each other. The admin panel
is a dashboard that enables the admin to manage
major activities that are performed at the rider and
driver end.

For each microservice deployment, up to 10 pods
were used. EKS and configured pods were used
for each service, such as dashboard, account, trip
services, etc.

To store the container images, Amazon Elastic
Container Registry (ECR) was used.

For caching of non-changing data, such as details
of driver and passenger, Redis Node of Memcache
service was used.

For SMS notifications the Amazon SNS service was
utilized

For storing static files such as profile images,
documents (Driver and Passenger) and invoice .pdf
file, etc., the Amazon S3 service was utilized

Entire DNS mapping was being managed by
Route53 services. Logging was handled by
CloudWatch and configured alarm notification to
keep track of resource utilization at the time of peak
traffic surge

For database, PostgreSQL was used and for CI/CD
of microservices, Jenkins pipelines was utilized

Highlights of the passenger app:

Few highlights of the driver app:

The rider app enables the users to schedule a ride,
book a ride for self/others, add multiple drops
between the pickup & drop location, check the
driver’s details as he accepts the ride (driver name,
number, vehicle number, rating, profile picture, etc).

When a customer books a ride, the driver will be
selected based on their availability in the minimum
defined radius. If more than one driver is found in
that radius, then the selection is done on the basis
of rating and number of rides served. If no rider is
found within a defined radius, then a notification is
passed to the riders to search for a ride in a bigger
radius.

Riders can check their past rides with details such as
date, time, location, fare, etc. They can also check
individual trip details with info such as driver profile,
driver name, car type, etc., along with a text box to
share the experience.

The driver can sign up and can register himself with
details such as name, photo, license, RC, etc., which
is further approved by the admin. The driver can view
the available rides and accept them.

The drivers can go offline or online to show their
availability to pick a ride. When the driver is online,
he can receive ride requests. If another driver with
the same vehicle is online, the driver gets an alert
that he can’t go online.

A driver has only one minute to accept a ride. If he
doesn’t respond, the request is passed to another
driver. On accepting a ride, the driver can see the
rider’s name, the distance between driver and rider,
and a button to contact the rider, and directions to
navigate to the rider. As the trip begins, the driver
gets updated about the ETA.

Drivers can check the trip details and history. The trip
history shows the list of all past rides and info such
as date & time of the trip, pick & drop location, total
fare, and driver’s commission. The drivers can check
details for a specific trip such as date & time, pick &
drop location, trip number, ratings, and comments
given by a rider.

The drivers can check areas with high demand on
a map with gradient colors. He is informed about
new ride requests, canceled requests, and reached
location through push notifications.

Few highlights of the admin panel

The admin dashboard has information such as total
number of vehicles, number of live vehicles, the
current-day status of the number of vehicles, trips,
earning, commission

The admin can define parameters for calculating an
estimated cost of a trip on the basis of factors such as
base fare, market demand, total distance, tariff, ride
time, vehicle type, etc.

For different types of vehicles, the admin manages
the tariff on the basis of parameters such as
minimum fare with KM limit, fare per additional KM,
waiting time, the number of stops, ride cancellation
time, set price on the basis surge based on-demand
factor, etc.

The client was able to launch and market the product in
a timely manner as Daffodil ensured that the deliverables
were provided on time, while maintaining utmost quality.
Within a few months of its launch, the application has
received an amazing response from businesses associated
with the consortium as well as the passengers. By utilizing
Amazon Web Services, team Daffodil was able to achieve a
number of benefits such reduced operational costs by 40%
using Amazon EKS, easy prediction of daily and weekly
spikes in usage, reduced service downtime with self-healing
container ecosystem etc. More than 77% of developers’
effort was reduced in launching/updating the application
through microservices.

Impact

180+
 travel businesses

associated

10,000+
taxis and drivers

registered

100,000+
faster-loading speed

100+
bookings handled

per minute

Technology Stack
Android and iOS (Native)

Angular

Java 11

Spring Boot

Spring Data JPA

Spring Security

Amazon Web Services
(AWS)

Node (Socket)

Database - (PostgreSQL,
Redis)

